	[image: image2.png]Y ocs

Transitigue et Hontage





	INSTRUCTION DE TRAVAIL

	IT 09(11
	REGLES DE L'ART EN PROGRAMMATION
	Page 1 de 25


	[image: image1.png]Y ocs

Transitigue et Hontage




	IT 09-11

	Règles de l'Art en Programmation
	Page 25 de 25

	
	Indice A



	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	A
	G. Quan
	
	B. Ricque
	
	F. Clément
	
	BPA

	Ind.
	Rédigé par
	Date/Visa
	Vérifié par
	Date/Visa
	Approuvé par
	Date/Visa
	Etat


HISTORIQUE DES INDICES

	Indice
	Date
	Modifications

	A
	23/06/2000
	Emission initiale


SOMMAIRE

41
INTRODUCTION

1.1
OBJET DE LA PROCEDURE
4
1.2
DOMAINE D'APPLICATION
4
1.3
SERVICES ET FONCTION CONCERNES
4
1.4
STRUCTURE DU DOCUMENT
4
1.5
REVISIONS LOGICIEL ET OUTILS
4
1.6
CONVENTIONS
4
1.7
REFERENCES
4
1.8
DOCUMENTS DE REFERENCE
5
1.9
ABREVIATIONS UTILISEES
5
1.10
DEFINITIONS
5
2
CRITERES GENERIQUES DE PROGRAMMATION SECURISEE
6
2.1
GENERALITES
6
2.2
FIABILITE
7
2.2.1
PREDICTABILITE DE L'UTILISATION DE LA MEMOIRE
8
2.2.2
PREDICTABILITE DES FLUX DE CONTROLE
9
2.2.3
PREDICTABILITE DU COMPORTEMENT TEMPOREL
14
2.2.4
PREDICTABILITE DES RESULTATS MATHEMATIQUES ET LOGIQUES
14
2.3
ROBUSTESSE
15
2.3.1
MAÎTRISE DE LA DIVERSITE
15
2.3.2
MAÎTRISE DES EXCEPTIONS
16
2.3.3
CONTROLE DES ENTREES / SORTIES
17
2.3.4
TRACABILITE
18
2.4
MAINTENABILITE
19
2.4.1
LISIBILITE
19
2.4.2
NIVEAU D'ABSTRACTION
22
2.4.3
COHESION FONCTIONNELLE
23
2.4.4
MALLEABILITE
24
2.4.5
PORTABILITE
24
3
ANNEXES
25


INTRODUCTION

1.1 OBJET DE LA PROCEDURE

Cette procédure rappelle les règles de l'art à prendre en compte pour la configuration et la programmation d'applications de contrôle commande dans le cadre de projets d'Ingénierie au sein de Euraltech Transitique et Montage.

1.2 DOMAINE D'APPLICATION

Cette procédure est applicable en permanence.

1.3 SERVICES ET FONCTION CONCERNES

Bureau d'Etudes Electricité Automatismes.

1.4 STRUCTURE DU DOCUMENT

Ce document est précédé d’une page de couverture, d’un historique des indices et d’un sommaire.

Le corps du document est constitué de 3 chapitres :

· Chapitre 1, "Introduction", présente un tableau complet du document,

· Chapitre 2, "Archivage et sauvegarde",

· Chapitre 3, "Annexes".

1.5 REVISIONS LOGICIEL ET OUTILS

Les logiciels utilisés pour la rédaction de ce document sont les suivants :

· Word 97 SR-1

1.6 CONVENTIONS

Les références entre chapitres reposent sur la numérotation des chapitres. Les références des documents externes sont basées sur la numérotation du document.

1.7 REFERENCES

[x] <<document>>, <<indice>>, <<auteur>>, <<date>>

DOCUMENTS DE REFERENCE

Cette procédure s’appuie sur les normes suivantes :

· ISO 9001 : Modèle pour l'assurance de la qualité en conception / développement, production, installation et soutien après la vente,

· ISO 9000-3 : Norme pour la gestion de la qualité et l'assurance de la qualité – Partie 3, lignes directives pour l'application de l'ISO 9001 au développement, à la mise à disposition et à la maintenance du logiciel,

· ISO 8402 : Normes pour la gestion de la qualité et l'assurance de la qualité – Vocabulaire,

· ISO 12207 : Technologies de l'information – Cycle de vie du logiciel,

· ISO 9126 : Technologies de l'information – Evaluation des produits logiciels – Directives d'utilisation et caractéristiques relatives à la qualité,

· ISO 15271 : Technologies de l'information – Directives pour l'application de l'ISO 12207,

· IEC 61508 : Sécurité fonctionnelle – Systèmes de sécurité,

· IEEE 7-4.3.2 1993 : Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Station.

1.8 ABREVIATIONS UTILISEES

· SCC : Système de contrôle commande

· AF : Analyse fonctionnelle

· AO : Analyse organique

· SGR : Spécifications générales de réalisations

· SDR : Spécifications détaillées de réalisation

· SGT : Spécifications générales de test

· SDT : Spécifications détaillées de test

1.9 DEFINITIONS

· Conception : NFX 50.127,Activité créatrice qui, partant des besoins exprimés et des connaissances existantes, aboutit à la définition d'un produit satisfaisant ces besoins et industriellement réalisable,

· Vérification : (ISO 8402-2-17), Confirmation par examen et apport de preuves tangibles que les exigences spécifiées sont satisfaites,

· Validation : (ISO 8402-2-18), Vérification portant sur des exigences particulières pour un usage spécifique,

CRITERES GENERIQUES DE PROGRAMMATION SECURISEE

1.10 GENERALITES

This chapter describes generic, or language-independent, attributes of safe programming. These attributes are used as a basis for deriving the language-specific guidelines described in the following chapters. As noted in the previous chapter, the attributes have been defined in a hierarchical, three- level framework. The top-level attributes are :

· Reliability. Reliability is the predictable and consistent performance of the software under conditions specified in the design basis. This top level attribute is important to safety because it decreases the likelihood that faults causing unsuccessful operation will be introduced into the source code during implementation.

· Robustness. Robustness is the capability of the safety system software to operate in an acceptable manner under abnormal conditions or events. This top level attribute is important to safety because it enhances the capability of the software to handle exception conditions, recover from internal failures, and prevent propagation of errors arising from unusual circumstances (not all of which may have been fully defined in the design basis).

· Traceability. Traceability relates to the feasibility of reviewing and identifying the source code and library component origin and development processes i.e., that the delivered code can be shown to be the product of a disciplined implementation process. Traceability also includes being able to associate source code with higher level design documents. This top level attribute is important to safety because it facilitates verification and validation, and other aspects of software quality assurance.

· Maintainability. The means by which the source code reduces the likelihood that faults will be introduced during changes made after delivery. This top level attribute is important to safety because it decreases the likelihood of unsuccessful operation resulting from faults during adaptive, corrective, or perfective software maintenance.

Sections 2.1 through 2.4 discuss each of these attributes in greater detail. Appendix B lists and summarises the associated lower level attributes, their relative priorities, and mitigation approaches (where applicable). Appendix D shows their relationship to applicable Institute of Electrical and Electronic Engineers (IEEE), International Electrotechnical Commission (IEC), and Department of Defence (DoD) standards and frameworks. It also contains a discussion of how these attributes compares with other work in software safety.

The guidelines set forth below assume the existence of "project guidelines" which have been adopted by the development contractor and approved by the responsible agency. It is also assumed that the project guidelines were reviewed by the auditor before beginning any review of the actual code. In some of the guidelines of this document, reference is made, usually implicitly, to the project guidelines. All references in this document of a comparative nature, such as a reference that some code characteristic should not be "excessive" or "too small", for example, should always be interpreted with respect to the project guidelines and good safety engineering practice.

After the first publication of this document, several enhancements to it were begun. In particular, a large number of trouble reports relating to Ada83 and C were analysed and correlated with the specific guidelines defined for these two languages for the purpose of providing World Wide Web support to the chapters discussing these languages. This analysis suggested a need for a slight revision of the lower-level attributes used to characterise the guidelines. The analysis also suggested a firmer theoretical basis for the taxonomy of faults underlying the guidelines. A presentation of this revised taxonomy and its theoretical basis follows.

First, it is easy to see that the purpose of this document (to aid in the review of software used in nuclear power plant safety systems) matches the top-level attributes well and that a clear taxonomy exists which can be shown as basis for these attributes. In particular, the scope of the review envisioned by this document extends from a review of software related design documents to line-by- line source code examination. The need encompasses both the software as it exists currently and as it will be modified in the future. The present software state is reviewed in accordance with the first three attributes (reliability, robustness, and traceability); the future software state is examined in terms of the fourth attribute, maintainability. The present software state is further examined in terms of its implementation (reliability and robustness) and its design (traceability -- i.e., does the implementation match the system requirements, the mathematical model of the system physics?). Finally, the distinction between the reliability attribute and the robustness attribute is the former's emphasis on nominal operating conditions and the latter's emphasis on off-nominal operating conditions. The resulting top-level taxonomy is shown (in normal face type) in Figure 2-1.

1.11 FIABILITE

In the software context, reliability is either (1) the probability of successful execution over a defined interval of time and under defined conditions, or (2) the probability of successful operation upon demand (IEEE, 1977). That the software executes to completion is a result of its proper behaviour with respect to system memory and program logic. That the software produces timely output is a function of the programmer's understanding of the language constructs and run-time environment characteristics.

Thus, the intermediate attributes for reliability set forth in the original version of this document were :

· Predictability of memory utilisation. There is a high likelihood that the software will not cause the processor to access unintended or unallowed memory locations.

· Predictability of control flow. There is a high probability that the processor will execute instructions in sequences intended by the programmer.

· Predictability of timing. There is a high probability that the software executing within the defined run-time environment will meet its response time and capacity constraints.

The same analysis that produced the top level taxonomy described above also suggested, for the object-oriented Ada95 and possibly C++, a fourth intermediate attribute as well as clarification of the meaning of these three attributes. The fourth attribute is:

Predictability of mathematical or logical result. There is a high probability that the software executing within the defined run-time environment will yield the programmer-intended mathematical or logical result.

The further clarification of these intermediate attributes is they all refer to the immediate or proximate result of the specific line(s) of code under review at the point the guideline is applied. Further justification for the addition of this fourth intermediate-level attribute comes from (Saaltink, 1996, page 5). In discussing Ada95, the authors identify "functional predictability" as a high integrity software needs category, where this category is defined as "the predictability of the values of outputs or, for concurrent systems, the sequence of interactions or outputs". This definition appears to include both the predictability of control flow as well as the predictability of mathematical or logical result.

As shown in Figures 2-2 and 2-3, for the non-object oriented languages and for the object-oriented languages, respectively, each of these intermediate attributes has multiple base attributes. As may be seen by comparing these two figures, interpreting the intermediate attributes in accordance with the preceding paragraph results in a change in the assignment of base attributes to intermediate attributes for the object-oriented Ada95. Although not shown on Figure 2-3, some characteristics of base attributes otherwise assignable to the higher-level attributes of Readability and Maintainability apply to Reliability and could be assigned to the new fourth intermediate attribute. The figures also show that base attributes related to object-oriented programming (control over polymorphism, minimisation of dynamic binding, and control over overloading) assigned in Figure 2-2 to both memory utilisation and control flow are assigned to the new fourth intermediate attribute in Figure 2-3. These attributes are discussed further in the following sections.

The effect of adding this fourth intermediate attribute is that the Ada95 chapter is organised somewhat differently from the other language chapters.

This revised taxonomy has not been applied to C++ even though this is obviously an object-oriented language. The reasons for this is that the authors' experience with C++ suggests that such benefit would at this time be small. Most C++ programmer are still primarily using the features of C++ which do not exploit the object-oriented characteristics of the language. Programmers are largely using C++ classes and C++ compilers for programs which are really C programs.

Future analysis may show the object-oriented language attribute structure for Reliability may apply to procedural languages as well. However, since this has not yet been shown, the attribute structure for procedure-oriented languages will continue to be used for all the languages except Ada95. To simplify the presentation in this chapter, the older, procedure-oriented attribute structure will be used throughout this chapter, with parenthetic remarks as appropriate for object-oriented languages.

1.11.1 PREDICTABILITE DE L'UTILISATION DE LA MEMOIRE

This section discusses the following base attributes that facilitate the predictability of memory utilisation :

· Minimising dynamic memory allocation

· Minimising memory paging and swapping.

MINIMISATION DES ALLOCATIONS DYNAMIQUES

Dynamic memory allocation is used in programs to temporarily claim (allocate) memory when necessary during run time and to free the memory (also during run time) for other uses when no longer needed. The safety concern is that when memory is dynamically allocated in a real-time system, the software may not subsequently release all or some of it. This can happen either because :

· The application program allocates memory to itself but does not free it as part of normal execution paths, or

· A program which has temporarily allocated memory to itself is interrupted in its execution prior to executing the statement which releases the memory.

Either of these situations will cause the eventual loss of all usable memory and a loss of all safety system functions. Dynamic memory allocation in digital safety systems should therefore be minimised.

If dynamic memory allocation is unavoidable, the source code should include provisions to ensure that:

All dynamically allocated memory during a specific execution cycle is released at the end of that cycle, and

The possibility of interruption of execution between the point where memory is dynamically allocated and when it is released is minimised (if not totally eliminated); there should also be provisions in the application code that will detect any situation where dynamically allocated memory has not been released and release such memory .

MINIMISATION DE LA PAGINATION ET DU SWAPPING

Memory paging is the use of a part of a disk (or other form of secondary or bulk memory) to store infrequently used primary memory areas. When these memory areas are needed by a running program, the operating system causes them to be read from the disk and loaded back into the primary memory. Process swapping is the use of part of a disk (or other form of bulk memory) to store the memory image of an entire inactive process (including its data areas such as a stack space and heap space).

When it is time for the process to be executed, the image is loaded from the disk back into the primary memory for use by the CPU. In any event, the specific usage of memory and the portion of storage used for swapping is indeterminate.

Both capabilities were developed for interactive and batch timesharing systems, where the demand for memory was greater than the amount installed in the computer system. However, they are inappropriate for safety systems because these indeterminacies in memory and storage utilisation can, in turn, cause significant delays in response time and use complex interrupt-driven functions to handle the memory transfers. In addition, these capabilities depend on electromechanical components (if a disk is used as the secondary storage device) which are subject to failure.

If an operating system and hardware that support memory paging or process swapping are used in a safety system, this feature should be disabled at the operating system level. There should be enough primary memory for all data and programs. If there is any question that these features were not disabled, there should be provisions in the safety applications software ensuring that all critical functions and their data areas are in primary memory during the entire period of execution. Such provisions in the source code include operating system calls ("pinning"), compiler directives, and operating system scripts.

1.11.2 PREDICTABILITE DES FLUX DE CONTROLE

Control flow defines the order in which statements in a program are executed (i.e., sequential, branching, looping, or procedural) (Meek, 1993). A predictable control flow allows an unambiguous assessment of how the program will execute under specified conditions. Related base attributes are :

· Maximising structure

· Minimising control flow complexity

· Initialising variables before use*

· Single entry and exit points for subprograms

· Minimising interface ambiguities*

· Use of data typing*

· Accounting for precision and accuracy*

· Order of precedence of arithmetic, logical, and functional operators*

· Avoiding functions or procedures with side effects*

· Separating assignment from evaluation*

· Proper handling of program instrumentation

· Controlling class library size*

· Minimising use of dynamic binding*

· Controlling operator overloading*

These attributes and their relevance to safety are discussed in the following subsections. The attributes marked with an asterisk are treated as lower level attributes associated with the intermediate-level attribute, predictability of mathematical/logical result, in Chapter 4, the chapter dealing with the Ada95 language.

MAXIMISATION DE LA STRUCTURE

"Spaghetti code" is a common derogatory reference to code with GOTO or equivalent execution control statements that cause an unstructured shift of execution from one branch of a program to another. The safety concern is that the execution time behaviour is difficult to trace and understand. GOTO statements can cause undesirable side effects because they interrupt execution of a particular code segment without assurance that subsequent execution will satisfy all conditions that caused entry into that segment. Standards discouraging or prohibiting such coding practices have been in place for more than two decades (e.g., MIL-Std-1679). Structure is maximised by the elimination of GOTO statements and use of appropriate block structured code. The case, if..then..else, do until, and do while constructs permit branching with a defined return and without introducing the uncertainty of control flow associated with GOTO or equivalent statements (Dijkstra, 1972; DoD-Std-2167A, Appendix C).

MINIMISATION DE LA COMPLEXITE

An indication of control flow complexity is the number of nesting levels for branching or looping. Excessive complexity makes it difficult to predict the flow of a program and impedes review and maintenance. A specific safety concern is that the control flow may be unpredictable when unanticipated combinations of parameters are encountered. Excessive nesting can usually be avoided by the use of functions or subroutines in place of in-line branches. A specific limit on nesting as part of project or organisational coding guidelines can mitigate safety concerns.

INITIALISATION DES VARIABLES

When variables are not initialised to a known value at the beginning of an execution cycle, safety is impaired because they may contain "garbage" values (residue from the previous use of that memory area). Run-time predictability requires that memory storage areas set aside for process data be set to known values before being accessed (set and used). The specific result of using unknown initial values of a variable depends upon how that variable is used in the software. A compiler cannot be depended on to automatically reset memory areas set aside for variables (Gottfried, 1993; Naiditch, 1993).

POINTS D'ENTREE ET DE SORTIE DES SOUS-PROGRAMMES

Multiple entry and exit points in subprograms introduce control flow uncertainties similar to those caused by GOTO statements (DoD-Std-2167A, Appendix C).

Run-time execution flow predictability is enhanced by having only a single entry to and exit from each program. Because predictability of execution flow is a characteristic important to safety, multiple entry and exit points in subroutines or functions are undesirable even if the language supports them.

MINIMISATION DE L'AMBIGUÏTE DES INTERFACES

Interface faults include mismatches in argument lists when calling other subprograms, communicating with other tasks, passing messages among objects, or using operating system services. An example of such a fault is reversing the order of arguments when calling a subroutine. Previous research on software failures has shown that this category of faults is quite significant (Chillarege, 1992; Thayer, 1976). Recent failures in actual systems have also served to underscore the need for reasonableness checks on input and output (Baber, 1997). Coding practices that can reduce or eliminate the probability of interface faults include :

· Ordering arguments to alternate different data types (reducing the chance that two adjacent arguments will be placed in an incorrect order).

· Using named notation rather than ordering or position notation for languages that support such notation, e.g., display(value=>TC5, units=>EU) rather than display(TC5, EU).

· Testing for the validity of input arguments at the beginning of the subprogram.

Routines should have adequate pre- and post-conditions specified. A pre-condition is an assurance that all local variables are initialised and all input variables meet appropriate reasonableness checks. A post-condition is an assurance that all output variables meet appropriate reasonableness checks.

UTILISATION DE DONNEES TYPEES

Acceptance of data that differ from those intended to be used by a program can cause failures, and such failures that occur during an exception condition may have particularly adverse effects on safety (IEEE, 1993). This concern can be addressed by declaration of data types. Originally, the primary advantage of declaring data types was to allow compilers to reserve the correct amount of memory. However, data typing is useful for improved definition of interfaces (see above), increased legibility (for reviews), and compile time and run time checking. These originally ancillary uses have now become the primary motivators for data typing and have prompted the use of strong typing in which additional declarations, at least that of a valid range, are required. The safety issues associated with data typing include (IEEE, 1993; DoD-Std-2167A, Appendix C ):

· Limiting the use of anonymous types (e.g., general integer or floating point without upper and lower limits) in strongly typed languages.

· Ensuring that the limits on data types are not excessively constrained so that spurious exceptions or error messages are not generated (this is an issue in strongly typed languages).

· Minimising type conversions, and eliminating implicit or automated type conversions (e.g., in assignments and pointer operations).

· Avoiding mixed-mode operations. If such operations are necessary, they should be clearly identified and described using prominent comments in the source code.

· Ensuring that expressions involving arithmetic evaluations or relational operations have a single data type--or the proper set of data types for which conversion difficulties are minimised.

· Limiting the use of indirection such as array indices, pointers (in Pascal or C), or access objects (in Ada) to situations where there are no other reasonable alternatives, and performing validation on indirectly addressed data prior to setting or use to ensure the correctness of the accessed locations. Strongly typed pointers, array indices, and access types reduce the possibility of referencing invalid locations.

PRECISION

The software implementation must provide adequate precision and accuracy for the intended safety application (IEEE, 1993). Safety concerns are raised when the declared precision of floating point variables is not supported by analysis--particularly when small differences between large values are used (e.g., when computing rate of change from the difference between current and previous values, calculating variances, or performing filtering operations such as moving averages).

ORDRES DE PRESEANCE

The default order of precedence of arithmetic, logical, and other operations varies among languages. Developers or reviewers may make incorrect precedence assumptions when explicit parentheses are not used--particularly in complex expressions (DoD-Std-2167A, Appendix C). Therefore the use of parentheses or other mechanisms for ensuring a clear statement of the order of evaluation of operations should be used.

EFFETS DE BORD FONCTIONNELS

A side effect is a change to any variable not returned by that function that persists after the completion of the function. This includes changes to files, hardware registers, etc. An example of such a side effect would be a change in a global variable not in the function parameter list. Side effects can lead to problems with unplanned dependencies and can cause bugs that are hard to find.

SEPARATION DES EVALUATIONS ET DES AFFECTATIONS

Assignment statements (e.g., extern_var := 100) should be separated from evaluation expressions (e.g., if sensor_val < temp_limit). The separation can be violated when subprograms are used as part of the evaluation. For example, a filtering function may be used as part of an evaluation rather than simply the sensor value :

if(func(a) < templimit).

Execution of func(a) may also set a global or external variable, using an assignment statement. For example:

func(t);

/* data declarations */

begin

/* initiation, execution, or evaluation code */

extern_var:=0;

/*an external variable declared at a higher scope

and used by this routine */

end.

As a result, when the subprogram func is called, it will set an external variable to a value of 0. The value of this variable may be used by other programs in calculations, logical decisions, or output. Although this change may have been explicitly intended by the programmer, it is difficult for others to follow. It is acceptable for the subprogram func to assign values to variables providing that these variables are visible only within the subprogram, i.e., they are local variables rather than global or external variables. A related attribute is minimization of the use of global variables discussed below.

INSTRUMENTATION DE LA PROGRAMMATION

Program instrumentation collects and outputs certain internal state values of a program during execution and allows the developer to check if particular aspects of the specification have been correctly implemented (Liao, 1991). Specific safety related issues are :

· Minimising Run-time Perturbations: Instrumentation that interferes with the normal execution flow is undesirable in safety applications. For example, extensive "write" or other output statements can result in the execution of a significant amount of library code associated with outputting values; a less intrusive means may be to write such values to external memory locations where they can be processed later. It may also mean writing data in binary format for off-line format processing (i.e., conversion to human-readable text and numeric values). To minimise differences in behaviour between test and normal operation, it may be desirable to keep certain instrumentation code in place in the actual environment.

· Maintaining Visibility of Instrumentation in Runtime Source Code: Some software tools alter compiler generated object (or executable) files in order to insert instrumentation (Campbell, 1994; Castellano, 1994). This is generally not acceptable in a safety system because the impact of such changes is not visible in the source code and its effect on execution cannot be reviewed.

· Conforming to Software Instrumentation Guidelines: Review is facilitated (and therefore safety is enhanced) if the instrumentation practices are described in project specific engineering notebooks. Guidelines are needed to identify what types of output mechanisms are to be used, and under which conditions they should not be used. For example, a measure mentioned above for minimising runtime interference is at odds with the data abstraction and error containment attributes described later in this section.

CONTROLE DES CLASSES DE LIBRAIRIES

Control of class library size is important to avoid a system that becomes unmanageable or has large performance penalties because it has too many classes and objects (Cuthill, 1993). Safety is enhanced if project-specific guidelines limit the number of classes and objects... and the actual software conforms to these guidelines.

MINIMISATION DES LIENS DYNAMIQUES

Binding denotes the association of a name with a class. Dynamic binding permits the name/class association to be deferred until the object designated by the name is created at execution time. The unpredictability of the name/class association creates safety concerns. It also reduces the predictability of the runtime behaviour of an object-oriented program and it complicates debugging, understanding, and tracing (Royce, 1993). Restrictions on, or elimination of, dynamic binding is desirable for safety-critical applications.

MAÎTRISE DU POLYMORPHISME

Polymorphism (operator overloading) can improve readability and reduce complexity by allowing a single subprogram or operator (in Ada) or object behavior (in C++ and Ada95) to be used for different data types. However, it can also be problematic from the perspective of predictability because it is unclear how a compiler will bind code for different polymorphisms (e.g., how would a multiply operation on a multidimensional array be bound to scalars or one-dimensional arrays) (Royce, 1993).

Guidance on use of operator overloading in a project-specific or organizational coding standards manual is therefore desirable for safety-related applications, together with verification that the code complies with this standard.

1.11.3 PREDICTABILITE DU COMPORTEMENT TEMPOREL

Predictability of timing is crucial in a safety system used in real time control (Kopetz, 1993; Leveson, 1992; Turner, 1992). For example, a reactor shutdown system must generate a trip signal within a specified interval of operating parameters falling outside of allowable ranges. Also, diesel engine start-up sequences require events to happen within a defined time interval. Base attributes related to object oriented programming that have relevance to this intermediate attribute were discussed under previous headings :

· Controlling class library size

· Minimising use of dynamic binding, and

· Controlling operator overloading.

Two additional base attributes related to timing discussed in the following subsections are :

· Minimising the use of tasking, and

· Minimising the use of interrupt driven processing.

MINIMISATION DES TACHES

Although tasking (in languages such as Ada) provides an attractive model for concurrent processing, its use is undesirable in safety-critical applications for the following reasons:

There are timing uncertainties associated with differing implementations by compiler vendors, interactions with underlying operating systems (or real time kernels), and the design of the hardware platform.

The sequence of execution is uncertain when several calling alternatives are waiting to be executed because it is not always clear which call will be selected (Gottfried, 1993; Naiditch, 1993).

Tasking allows time critical errors such as race conditions and deadlocks to develop. Such differences are difficult to debug (Royce, 1993).

Therefore, tasking is to be avoided in safety systems unless there is a compelling justification.

MINIMISATION DES INTERRUPTIONS

Using interrupt driven processing to handle the acceptance and processing of plant and operator input can reduce average response time, but usually leads to non-deterministic maximum response times. Interrupt driven processing was implicated in at least one of the Therac-25 accidents (Leveson, 1992; Turner, 1992).

Reference documents and standards related to digital system safety generally discourage or prohibit its use (IEC 880). Avoiding interrupt driven processing facilitates analysis of synchronisation and run-time behaviour, and avoids the non-determinism of response time inherent in interrupt driven processing.

1.11.4 PREDICTABILITE DES RESULTATS MATHEMATIQUES ET LOGIQUES

Predictable mathematical or logical result means that the results realised at the completion of execution of the low level of code (source line or construct) being examined are the results intended and expected by the programmer who wrote the code. The term "logical" is intended to extend the term "results" to the case where the code is manipulating Boolean data and will yield a Boolean result.

As mentioned previously in this chapter, this intermediate level attribute is being only applied to object-oriented Ada95 at this time. Accordingly, there is no need for separate generic guidelines for the lower level attributes assigned to this intermediate level-attribute other than the guidelines presented in this chapter for procedure-oriented languages.

1.12 ROBUSTESSE

Robustness refers to the capability of the software to continue execution during off-normal or other unanticipated conditions. A synonym for robustness is survivability (Bowen, 1985; Wigle, 1985). Robustness is an important attribute for a safety system because unanticipated events can happen during an accident or excursion, and the capability of the software to continue monitoring and controlling a system in such circumstances is vital.

As shown in Figure 2-4, the intermediate attributes for robustness are :

· Controlling use of diversity

· Controlling use of exception handling

· Checking input and output.

These attributes and their relevance to safety are discussed in the following subsections.

1.12.1 MAÎTRISE DE LA DIVERSITE

The decision to employ diverse software implementations is a design-level function and is therefore outside the scope of this document. However, if diversity is called for in the design or requirements, it should be controlled in its application. The principal issue with the use of diversity in software is the possibility that common-mode software failures may cause redundant safety systems to fail in such a way that there is a loss of safety function (Committee, 1995).

The possibility of common-mode failures between independently developed software routines is not easily eliminated. Any shared specification can lead to common-mode failures. The same problem exists in developing test data to check the software -- the testers may omit the same off-nominal or unusual cases that the developers overlooked. Further, in order to use the approach where the outputs of multiple versions of software can be compared in real time (or to be able to compare intermediate results), the designs from independent teams may be overspecified. Such detailed common specifications may result in little software design diversity.

In addition, multiple versions of the software written independently from the same requirements specification are effective only against coding errors (and sometimes only a limited set of these). On the other hand, empirical evidence suggests that most safety problems (and most errors found in operational software) stem from errors in the software requirements, especially misunderstandings about the required operation of the software. Software intended to provide redundancy may not achieve this goal but may simply duplicate the misunderstandings (Committee, 1995). In reviewing safety-critical software, analysis of software diversity to determine common-mode failures is important.

There are two base attributes:

· Controlling internal diversity

· Controlling external diversity.

MAÎTRISE DE LA DIVERSITE INTERNE

When only internal diversity is used, the interfaces to all versions must be identical. In other words, any sensor data or parameters from calling procedures should be passed identically to all versions, and output data from any version should be accepted and used by other parts of the system. However, internal operations and storage of local data should occur diversely in the multiple module versions or instantiations. Internal diversity is facilitated by an object-oriented approach in which the same messages and methods are used, but the internal algorithms and data representations differ (Cuthill, 1993). Internal diversity should be implemented in accordance with the design and with project-specific guidelines. These should address :

· Diverse Algorithms. Using different algorithms, unit conversions, and process parameters (when calls for or allowed in the requirements or design) minimises the possibility of a design or implementation-related failure.

· Diverse data validation. Using alternate schemes for sensor (or other input) data and output data validation minimises the possibility of a designer implementation-related failure.

· Diverse exception handling routines. This measure reduces the probability that an error in the exception handling or processing will occur simultaneously on multiple versions.

· Different data types, structures, and storage allocation. This measure reduces the possibility that unanticipated interactions between the object code generated by the compiler and the operating system will cause data or code to be inadvertently overwritten simultaneously on multiple versions.

· Diverse libraries and subroutines. Avoiding use of the same application software subroutines, compiler-supplied library routines, and operating system provided application programming interfaces. This measure reduces the possibility of a simultaneous failure due to a defect in such routines.

· Diverse order of arithmetic operation. Changing the order of arithmetic operations in conversions, arithmetic, and assignment statements by using commutative, associative, and distributive properties reduces the possibility of simultaneous failures due to unanticipated overflow conditions generated by intermediate results or problems in numerical precision.

· Diverse order of input and output operation. Performing I/O operations in different orders reduces the possibility of simultaneous timing-related failures (such as a deadlock) or data-driven failures (i.e., a program crash due to a particular data value).

MAÎTRISE DE LA DIVERSITE EXTERNE

Where external diversity is used, safety is enhanced if it is implemented in a disciplined manner in accordance with design documents. The design documents should reflect the diversity imposed by requirements, hazard analyses, and similar sources. External diversity is achieved by using different interfaces among the versions, and may be combined with internal diversity. External diversity is necessary when different languages are used for different versions, and may also be used to obtain sensor data through a different channel. Uncontrolled or unspecified external diversity can lead to a proliferation of interfaces which impact safety due to difficult maintenance, testing, verification, and validation.

1.12.2 MAÎTRISE DES EXCEPTIONS

Exception handling deals with abnormal system states and input data (IEEE, 1993). Exception handling provisions in some languages facilitate the establishment of an alternate execution path in the event of conditions which, although unexpected, result in states that can be defined in advance. Problems can arise in the use of exception raising and handling, however, because execution flow during exception conditions is often difficult to trace.

Base attributes with respect to exception handling include (DoD-Std-2167A, Appendix, D) :

· Handling of exceptions locally

· Preserving external control flow

· Handling of exceptions uniformly.

EXCEPTIONS LOCALES

Propagation of exceptions through several levels of a program can cause the precise nature of the exception to be misinterpreted at the place where the exception handling is implemented. This cause of system failure (with potentially serious safety implications) is avoided if exceptions are handled locally.

CONTROLE EXTERNE DES FLUX

Interruption of control flow external to the routine in which the exception was raised creates uncertainty in the execution subsequent to the exception handling. Safety is enhanced by preservation of control flow external to the module responsible for the exception.

UNIFORMITE

Undisciplined use of exception handling can result in inconsistent processing of the same exception condition in different parts of the code. At worst, it can result in some exceptions being raised and not handled. These problems can be avoided by guidance on the use of exceptions as part of the coding practices procedures of the organisation or the specific project. Topics to be included in this guidance are :

· General and project specific exceptions which have been defined and are allowed

· Placement of exception handling code

· Enumerating all intended side effects and verifying that there are no other side effects

· Ensuring the integrity of critical state data during exception processing

Criteria for distinguishing what conditions should be handled through control flow constructs as part of normal processing versus abnormal conditions where use of exception handling is appropriate.

1.12.3 CONTROLE DES ENTREES / SORTIES

Data corruption due to a transient failure or an invalid result can have serious consequences on subsequent processing if allowed to propagate. The base attributes related to input and output checking mitigate such consequences by containing the error. The two base attributes discussed in the following subsections are :

· Input data checking and

· Output data checking.

ENTREES

Input data includes data from another routine, data from the external environment, and data stored in memory from a previous iteration. Input data should be checked for validity before processing. Such checks reduce the probability of incorrect results or corrupted data being propagated. At a minimum, the values of the inputs should be checked for data type and being within an acceptable range. If possible, reasonableness checks on the data should also be performed. Provisions should exist in the safety system software to detect invalid input and to bring the module to a known state (i.e., default or previously valid values) as defined in the higher-level design.

SORTIES

Output data—whether to the external environment, to another routine or stored for use in a subsequent iteration—should be checked for validity. At a minimum, this validity check should ensure that the values are of the appropriate data type and are within acceptable ranges. It is more desirable that the values also be checked for reasonableness. However, such reasonableness checks should not be so restrictive that they spuriously reject correct values. Provisions for handling rejected output values according to the design should also be present in the software.

1.12.4 TRACABILITE

As defined earlier in this chapter, traceability refers to attributes of safety software which support verification of correctness and completeness compared with the software design. As shown in Figure 2-5, the intermediate attributes for traceability ar e:

· Readability

· Controlling use of built-in functions

· Controlling use of compiled libraries.

Since readability is also an intermediate attribute of maintainability, it is discussed in Section 2.4. The latter two attributes and their relevance to safety are discussed in the following section.

MACRO_FONCTIONS

Nearly all languages include built-in functions for frequently used programming tasks to maximise programmer productivity. However, the limitations of these functions and the way in which they handle exceptions may not be as well known as those of the basic language constructs. Thus, the use of such functions raises safety concerns.

Concerns over the use of built-in functions can be addressed through organizational or project specific guidelines. Regression test cases make it possible to establish conformance with expected results of new releases of compilers and runtime libraries. Thus, test cases, procedures, and results of previous testing for allowable built-in functions should be retained. Testing should also assess behaviour for out-of-bounds and marginal conditions (e.g., negative arguments on a square root routine; improperly terminated strings for a string copy routine, etc.) in the specific runtime environment.

LIBRAIRIES COMPILEES

Compiled libraries are routines written and compiled by an entity other than the development group. Applications of compiled libraries include input/output operations, device drivers, or mathematical operations that are not defined in the standard language. Such libraries can be supplied by compiler vendors, third parties, or other departments of the development organisation. Concerns for such libraries are similar to those for built-in functions.

Concerns over the use of compiled libraries can be addressed by controlling the use of function calls to such libraries through organizational or project-specific guidelines.

Like built-in functions, a set of test cases, procedures, and results should be maintained. The test cases should assess behaviour for normal, out-of-bounds, and marginal conditions in the specific runtime environment. Regression testing should be performed for each new release of the compiled library.

1.13 MAINTENABILITE

Software maintainability reduces the likelihood that errors will be introduced while making changes. The intermediate attributes related to maintainability that affect safety include :

· Readability: those attributes of the software that facilitate the understanding of the software by project personnel

· Data abstraction: the extent to which the code is partitioned and modularised so that the collateral impact and probability of unintended side effects due to software changes are minimised

· Functional cohesiveness: the appropriate allocation of design level functions to software elements in the code (one procedure; one function)

· Malleability: the extent to which areas of potential change are isolated from the rest of the code

· Portability: the major safety impact of which is the avoidance of non-standard functions of a language.

1.13.1 LISIBILITE

Readability allows software to be understood by qualified development personnel other than the writer. The importance of readability for maintainability can be seen by a study performed at the NASA Goddard Software Engineering Laboratory (McGarry, 1992) in which manual code reading (desk checking) was found to be more effective than structural or functional testing for finding coding faults. It is reasonable to extrapolate that readability would also enhance identifying code to be changed during corrective or adaptive maintenance and would reduce the probability of introducing new faults during such maintenance.

There are no general standards for readability that can be mandated or even recommended. However, organizational or project-specific coding style and practice manuals (or related guidelines) are expected for safety-critical systems. The following base attributes are related to readability :

· Conforming to indentation guidelines

· Using descriptive identifier names

· Commenting and internal documentation

· Limiting subprogram size

· Minimising mixed language programming

· Minimising obscure or subtle programming constructs

· Minimising dispersion or related elements

· Minimising use of literals

INDENTATION

Appropriate indentation facilitates the identification of declarations, control flows, non-executable comments, and other components of source code (DoD-Std-2167A, Appendix C). Indentation guidelines are generally part of a project specific or organizational programming style or standards. Significant issues to be addressed by indentation practices are the handling of :

· Programming blocks (sequences of statements bounded by begin and end)

· Comments

· Branching constructs (e.g., if...then...else, case statements, loops, etc.)

· Multiple levels of nesting (e.g., a do loop within a do loop)

· Variable and subroutine declarations

· Compiler directives

· Exception raising and handling.

REPERAGE

Names for variables, procedures, functions, data types, constants, exceptions, objects, methods, labels, and other identifiers that are not easily understood can impede review and maintenance. Safety concerns arising from naming practices can be alleviated when names are required to be descriptive, consistent, and traceable to higher-level (i.e., software design) documents (DoD-Std-2167A, Appendix C). Naming conventions are an important part of the coding style and practices manual.

Examples of issues to be addressed include :

· Identification of plant input data (e.g., should the variable refer to a sensor, or should it be called loop1_hot_leg_TC1)

· How looping variables should be named (e.g., i,j,k or longer titles)

· Local renaming of identifiers (e.g., average_procedure.mean renamed as mean)

· Distinguishing between different categories of identifiers (e.g., a suffix on all data types with an _T to distinguish them from variables)

· Lists of project-specific terminology and reserved words (e.g., restrictions on the use of the terms "alarm", "limit", etc.).

Use of the same name for a different purpose is to be avoided unless obviously advantageous and, when employed, should be accompanied by clear, consistent, and unambiguous notations. Multiple use of the same name can be confusing. A further problem can occur if the language supports precompiled units (such as Ada). A variable with the same name in two different packages, one of which is used by the other may be interpreted by the compiler in a different manner than intended by the program writer. In some cases, the programmer may have omitted the declaration of a name in a package. Thus, another package can cause a different variable with the same name to be used in a totally unintended manner (Campbell, 1994; Castellano, 1994). If the particular branch or execution path is not encountered frequently, it is possible that such a fault would not be discovered until it causes a run-time failure.

Use of reserved words for user-selected identifiers (in languages where this feature is allowed) is undesirable (DoD-Std-2167A, Appendix C).

COMMENTAIRES

Incomplete comments, inconsistent formats, and comments that are not updated to reflect the current code impede review and raise safety concerns. These problems can be minimised by guidance in the organizational or project coding standards that controls comments and internal (to the program) documentation. Examples of items, when incorporated, that should be located in the prologue section include the following (DoD-Std-2167A, Appendix C) :

· The subprogram or unit purpose and how achieved

· Functions and performance requirements, and external interfaces that the subprogram or unit helps implement

· Other subprograms or units called and their dependencies

· Use of global and local variables and, if applicable, memory and register locations together with special maintenance instructions

· The responsible programming department or section

· Date of creation of the unit

· Date of latest revision, revision number, problem report number, and title associated with the revision Intended failure behaviour and related information for all major segments of the code.

· Inputs and outputs, including data files referenced during unit entry of execution

· Comments on the purpose, scope, and limitations on each argument (for subprograms with arguments).

Similar examples for documentation within the code include :

· Reference to higher level design documentation in comments associated with data type, variable, and constant declarations

· Purpose and expected results at the beginning of branches and programming blocks

· Detailed in-line comments explaining unusual constructs and deviations from programming practices.

TAILLE DES SOUS-PROGRAMMES

Some documents recommend specific limits on the source code of each subprogram or unit. For example, an average of 100 non-expandable statements and a maximum of more than 200 such statements has been recommended (DoD-Std-2167A, Appendix C). Concern with the size of subprograms was one of the motivators for the adoption of structured programming. In Dijkstra's words, "Widespread under-estimation of the specific difficulties of size seems to be one of the major underlying causes of software failure" (Dahl, 1972; Dijkstra, 1972). Small subprograms (one or two pages) are easier to review than longer ones. However, the limits on allowable size must also take into account the nature of the program and the language. In nuclear safety and control systems, a given code must frequently handle a multitude of sensed quantities, and the data declarations (with required comments) for these can by themselves amount to more than a page. The criterion for this base attribute is therefore that guidance on size be provided, rather than a universal numerical threshold.

MINIMISATION DES LANGAGES

Mixed language programming (e.g., assembly language for interrupt handling and high-level languages for other processing) presents difficulties for reviewers and maintainers and is therefore a safety concern. When this practice cannot be avoided, the difficulties can be minimised by placing the "foreign" language code adjacent to the dominant language routine with which it interfaces (e.g., an in-line assembly compiler directive in the input processing routine associated with an interrupt) so that readability is enhanced.

STRUCTURES ABSCONSES

Obscure coding constructs can generally be characterised as the use of indirect techniques to decrease the amount of coding or CPU processing required to achieve a result. Such coding practices present problems in review and maintenance and hence are a safety concern. For example shifting an integer to the left is equivalent to doubling its value. However, the former construct would be obscure if the design calls for doubling the value (i.e., it would be preferable to perform the multiplication); the latter construct would be obscure if the design calls for shifting the value to the left (i.e., it would be preferable to perform the shifting operation in the source code rather than multiplying by 2). Appropriate commenting can minimise the impact of obscure or marginally obscure coding changes (e.g., adding the value to itself as a means of doubling it).

MINIMISATION DE LA DISPERSION DES ELEMENTS

If related elements of the code are dispersed in a program, it is necessary to refer to multiple locations within a source listing during reviews and maintenance. However, the specific nature of the dispersion varies by language. For example, some languages allow for interface specifications separated from the body of the code; others allow for "prototyping" for a similar purpose. In languages with strong data typing, it may be desirable to centralise all type declarations in a single file (or set of files); in object-oriented languages, it may be desirable to segregate base classes from derived classes. Review is facilitated and safety is enhanced if project-specific guidance is provided on the placement of related elements in the code.

MINIMISATION DES CONSTANTES

Literals (i.e., an actual number or string in the source code) are more difficult to identify than names to which a constant value is assigned at the beginning of the module (DoD-Std-2167A, Appendix C). Literals impact safety because they decrease readability and complicate maintainability--particularly if the literal is associated with a process parameter which may be tuned or a conversion factor which may be changed upon recalibration of an instrument. It is far easier to change one value set at the beginning of a file than it is to guarantee that all literals associated with such a parameter have been changed completely and correctly throughout all relevant files.

1.13.2 NIVEAU D'ABSTRACTION

Data abstraction is the combination of data and allowable operations on that data into a single entity, and establishment of an interface which allows access, manipulation and storage of the data only through the allowable operations. It is an important contributor to safety by virtue of reducing or eliminating potential side effects of changing variables either during runtime or in software maintenance activities (Parnas, 1972). This principle is associated with the following specific base attributes :

· Minimising the use of global variables

· Minimising the complexity of the interface defining allowable operations.

MINIMISATION DES VARIABLES GLOBALES

It is desirable to limit the use of global variables in safety related programs (Parnas, 1990; van Schouwen, 1990; Kwan, 1990) because of the potential for unintended side effects. Readability is enhanced if variables are set and used in the same routine. These variables can be made available to other routines through established and controlled interfaces which minimise the possibility of unintended interactions. For the same reasons, dependencies among internal stored data of different routines need to be avoided or controlled.

To avoid potential safety concerns, local variables within different programs should not share the same storage locations (DoD-Std-2167A, Appendix C).

MINIMISATION DE LA COMPLEXITE DES INTERFACES

Interfaces are a frequent cause of software failures (Thayer, 1976). Complex interfaces are difficult to review and maintain and are therefore not desirable in safety related programs. Characteristics that contribute to complexity includee :

· Large numbers of arguments used in calling routines

· Use of terse expressions when different modes or options are used (e.g., arraymult(a,b,2)instead of arraymult(a,b,crossproduct))

· Lack of easily understood restrictions and limitations on the use of allowable operations.

1.13.3 COHESION FONCTIONNELLE

Functional cohesiveness refers to a clear correspondence between the functions of a program and the structure of its components. Functional cohesiveness has a single base attribute.

UNIVOCITE DES FONCTIONS

Review and maintenance are facilitated when every given procedure, subprogram, or function implements only one task or purpose specified in the software design.

Subprograms, functions, or procedures that perform multiple tasks should be separated and written as separate functions. A simple way to test if a function is a single purpose function is to check to determine if the function can be summarised by a sentence in the following form (Parnas, 1990) :

· "verb + object(s)"

If multiple purposes or tasks specified in the design must be grouped into a single subprogram, function, or procedure, then justification of the grouping should be documented.

UNIVOCITE DES VARIABLES

The principle of single purpose functions should be applied to variables. A variable should be used for a single purpose only (Plum, 1991).

1.13.4 MALLEABILITE

Malleability is the ability of a software system to accommodate changes in functional requirements (Parnas, 1990). Malleability extends data abstraction with the motivation toward isolating areas of potential change. To implement a malleable software system, it is necessary to identify what is expected to be constant and what is expected to be changed, and to isolate what is expected to be changed into easily identifiable areas that can be altered with a minimum of collateral changes. Malleability has a single base attribute.

ISOLATION DES FONCTIONS

Review and maintenance are facilitated when functions that can be altered are isolated, so that changes in these do not affect other code or data. In many cases, such functions are hardware-related functions that need to be changed when the platform changes, the system changes, or when new devices are used to replace old devices.

For example, when a new display device is used to replace an old display device, graphics-display- related functions may need to be modified. Thus, the functions associated with the graphics controller should be grouped together in the same file, kept in close physical proximity, and organised in a manner which minimises changes to other modules.

To a large extent, the isolation of alterable functions is a design issue related to data abstraction. As such, a detailed discussion is beyond the scope of this document.

1.13.5 PORTABILITE

From the perspective of safety, the benefits of portability are the adherence to standard programming constructs that yield predictable and consistent results across different operating platforms (Witt, 1994; Baker, 1994; Merrit, 1994). Thus, code which is reused or converted to run on a different platform will be easier to maintain. Attributes related to portability which have been discussed elsewhere include :

· Minimising the use of built-in functions

· Minimising the use of compiled libraries

· Minimising dynamic binding

· Minimising tasking

· Minimising asynchronous constructs (interrupts).

The single base attribute related to portability is avoiding use of non-standard, or "enhanced" constructs specific to a particular compiler or a compiler in combination with the execution platform (Smith, 1989; Wood, 1989).

ISOLATION DES STRUCTURES NON-STANDARD

Where non-standard constructs are necessary, they should be clearly identified together with the rationale, limitations, and version dependencies.

2 ANNEXES

Classeur des DPE :



































































C:\windows\TEMP\FrontPageTempDir\IT09-11 IndA BPA.DOC
C:\windows\TEMP\FrontPageTempDir\IT09-11 IndA BPA.DOC
Ce document est la propriété de la société ETM et ne peut être reproduit ou diffusé sans son autorisation


[image: image1.png][image: image2.png]