
Introduction to Mathematically Rigorous Software Development

Honours Course, 1996 quarter 1

Review of mathematical fundamentals: Boolean algebra
1. Define the Boolean functions and, or, not, implication ((), equivalence (() and equals (=) by truth tables.

2. In an expression the various functions are evaluated in the following order unless otherwise indicated by parentheses:

((exponentiation)

+, - (sign)

*, / (multiplication, division)

+, - (addition, subtraction)

<, >, =, (, (, ((relations)

not (also written ()

and (also written ()

or (also written ()

(, (, ((logical implications)

Prove that the following equalities hold for all x, y, z (IB (IB = {false, true}):

2.1.
(x and y) = (y and x)

2.2.
(x or y) = (y or x)

2.3.
(x and (y and z)) = ((x and y) and z)

2.4.
(x or (y or z)) = ((x or y) or z)

2.5.
(x and (y or z)) = ((x and y) or (x and z))

2.6.
(x or (y and z)) = ((x or y) and (x or z))

2.7.
(x and not x) = false

2.8.
(x and false) = false

2.9.
(x and x) = x

2.10.
(x and true) = x

2.11.
(x or false) = x

2.12.
(x or x) = x

2.13.
(x or true) = true

2.14.
(x or not x) = true

2.15.
(x or (x and y)) = x

2.16.
(x or (not x and y)) = (x or y)

2.17.
(not (not x)) = x

2.18.
(not (x and y)) = ((not x) or (not y))

2.19.
(not (x or y)) = ((not x) and (not y))

2.20.
(x (y) = (not (x and not y))

2.21.
(x (y) = ((not x) or y)

2.22.
(x (y) = ((not y) ((not x))

2.23.
(z and (x (y)) = (z and ((z and x) (y))

2.24.
(x = y) = ((x and y) or (not x and not y))

2.25.
(x((y=z)) = ((x and y)=(x and z))

2.26.
(x((y=z)) (((x and y)=(x and z))

What is the practical significance of 2.26?

3. Let B, C and D be Boolean variables or functions (i.e. functions with values in IB = {false, true}). The function F is defined as follows:

F
= C, if B = true,

= D, if B = false

Write an equivalent expression for F using only B, C, D, and the Boolean functions and, or and not. Prove that your expression for F satisifes the definition above.

4. Simplify or expand the following expressions:

4.1:
x and (y (z)

4.2:
x or (y (z)

4.3:
(x and y) (z

4.4:
(x or y) (z

4.5:
-x>0 and x<0 or x>0 and not x<0

4.6:
-x(0 and x<0 or x(0 and not x<0

4.7:
-x<0 and x<0 or x<0 and not x<0

4.8:
-x(0 and x<0 or x(0 and not x<0

4.9:
(w or x) and (y or z)

4.10:
[ia(na or ib(nb] and [ib>nb or ia(na and A(ia)(B(ib)]

4.11:
[ia(na or ib(nb] and [ib>nb or ia(na and ib(nb and A(ia)(B(ib)]

4.12:
not (ib>nb or ia(na and A(ia)(B(ib))

5. Show that

{not (ia(na and [ib>nb or A(ia)(B(ib)])}

= {ib(nb and [ia>na or A(ia)>B(ib)]}

when ia(na or ib(nb.

(end)

Introduction to Mathematically Rigorous Software Development

Honours Course, 1996 quarter 1

Review of mathematical fundamentals: notation
1. The notation f.x is often used in place of the more classical form f(x). The dot (.) is interpreted as an infix operator with the meaning "functional application", i.e. the application of the function f to the argument x.

2. Proofs are often written in the following format:

expression 1

=

expression 2

=

expression 3

etc. This is defined to mean (expression 1 = expression 2) and (expression 2 = expression 3), etc. Similarly,

expression 1

(

expression 2

(

expression 3

is defined to mean (expression 1 (expression 2) and (expression 2 (expression 3).

3. The notation (op i : r.i : exp.i) means

exp.i1 op exp.i2 op exp.i3 ...

where op is any operator (function) satisfying the associative law and where i1, i2, i3, etc. are all the arguments for which the Boolean function r is true. The expression (function) exp need not be Boolean; its range may be any set consistent with the definition of the particular op.

(A i : i(S : exp.i) is often written instead of ((i(S:exp.i). Similarly, (E i : i(S : exp.i) is often written for ((i(S:exp.i).

4. Many target groups of readers are not particularly familiar with mathematical symbols such as (, (, (, etc.; they find the resulting, often rather dense, expressions difficult to read and understand. Readability can often be facilitated by using more descriptive notation such as and, or, etc. instead of the mathematical symbols.

5. The familiar (notation can be generalized to associative operations (functions) other than addition in the obvious manner, e.g.

andi=1n exp.i

etc.

(end)

Introduction to Mathematically Rigorous Software Development

Honours Course, 1996 quarter 1

Review of mathematical fundamentals: images and preimages of a function
1. Let F be a function with domain Xd and range Yr; F maps any element of Xd to some element of Yr. Further, let X1 and Xd be subsets of a set X. Similarly, let Y1 and Yd be subsets of a set Y.

The image of X1 under F is defined as the set of elements to which F maps elements of X1. Formally, the image of X1 under F is the set

((x : x(X1(Xd : {F.x})

The image of X1 under F is written F.X1 and is a subset of Yr (and hence of Y). The function referred to in the expression F.X1 (where X1(X) is, strictly speaking, a different function than the one referred to in the expression F.x (where x(X). The same notation is usually used, however, since the two functions are so closely related.

The preimage of Y1 under F is defined as the set of elements of X which F maps to elements of Y1. Formally, the preimage of Y1 under F is the set

((x : x(Xd (F.x(Y1 : {x})

The preimage of Y1 under F is written F-1.Y1 and is a subset of Xd (and hence of X).

The range Yr of F is the image of X under F. The domain Xd of F is the preimage of Y under F.

2. The formation of images and preimages are monotonic operations:

X1(X2 (F.X1(F.X2

Y1(Y2 (F-1.Y1(F-1.Y2

The reverse implications are not, however, generally true.

3. The images and preimages of intersections and unions are equal to the intersections and unions of images and preimages:

F.(X1(X2) = (F.X1)((F.X2)
[= valid only if F is a one-to-one function, otherwise (]

F.(X1(X2) = (F.X1)((F.X2)

F-1.(Y1(Y2) = (F-1.Y1)((F-1.Y2)

F-1.(Y1(Y2) = (F-1.Y1)((F-1.Y2)

where X1 and X2 are subsets of X and Y1 and Y2 are subsets of Y (cf. above).

It is recommended that the student prove the above statements and find counterexamples of those statements purported not to be true.

(end)

Introduction to Mathematically Rigorous Software Development

Honours Course, 1996 quarter 1

Review of mathematical fundamentals: Boolean series
1. The value of the empty and series, e.g.

andi=10 exp.i

is defined to be true. The value of the empty or series is defined to be false. (Why?)

2. A term may be taken out of a Boolean series only if the series is not empty. E.g. the equality

[andi=1n exp.i] = [exp.n andi=1n-1 exp.i]

is true in general only if 1(n.

To take a term out of a series which may be empty, one must in effect make a case distinction, e.g. by and-ing the series in question with a tautology (a universally true expression) which distinguishes between an empty and a non-empty series. In the above example, a suitable such expression is (n<1 or 1(n).

The resulting generally valid expressions for removing a term from a series are:

[andi=ab exp.i] = [b<a or a(b and exp.b andi=1b-1 exp.i]

[ori=ab exp.i] = [a(b and (exp.b ori=1b-1 exp.i)]

(end)

Introduction to Mathematically Rigorous Software Development

Honours Course, 1996 quarter 1

Review of mathematical fundamentals: extending the domain of a function
1. One sometimes wants to extend the definition of a function for arguments not in the domain of the original function. The general pattern of such an extension is as follows.

Let f be a function with domain D and range R. Furthermore let D' be a superset of D. The function f' is defined in the following general way:

f'.x
= f.x,
if x(D

= ?,
otherwise

where ? represents any arbitrary value. One often useful convention is to replace the ? above with a value (an element) undef which is neither in D nor in R. Other conventions, in which other values are substituted for ? above, are also useful in specific contexts.

2. In modelling mathematically some types of run time errors, e.g. those resulting from references to undeclared variables, we will extend the definitions of the Boolean functions and, or and not over the set {false, undef, true} in different ways. See The Spine of Software, p. 271 ff.

(end)

PAGE
- 1 -

